10 research outputs found

    Amphipods of the deep Mississippi Canyon, northern Gulf of Mexico: ecology and bioaccumulation of organic contaminants

    Get PDF
    In five summer cruises during the period 2000-2004, seventy-four box cores were collected from eleven locations from the Mississippi Canyon (480- 2750m, northern Gulf of Mexico), and an adjacent transect (336-2920) to understand the community structure and trophic function of amphipods and for measuring the bioaccumulation of polycyclic aromatic hydrocarbons, (PAHs). Amphipods were discovered to be an important component of the macrofauna of the Mississippi Canyon (40 % of the total faunal abundance). Seventy two species, belonging to nineteen families, were collected from the study area with 61 species from the canyon and only 38 species from the non-Canyon transect. The head of the canyon (480m) was dominated by dense mats (15,880 ind/m2) of a new amphipod (Ampelisca mississippiana). The logarithm of the amphipod abundance decreased linearly with depth. The species diversity (H`) exhibited a parabolic pattern with a maximum at 1100m. The differences in amphipod abundances and biodiversities were correlated with the variation in the amount of available organic matter. The depression in diversity in the canyon head is thought to be competitive exclusion resulting from the dominance by A.mississippiana, but the high species richness is presumed to be a function of the structural complexity of the canyon. Annual secondary production of A. mississippiana was 6.93 g dry wt m-2, based on size-frequency method and corresponding to an estimated univoltine generation from a regression model. The production/biomass ratio (P/B) was 3.11. Production of this magnitude is comparable to shallow marine ampeliscids but are high for the depauperate northern Gulf of Mexico. The effect of the organic contaminants and the bioavailability to the amphipods was determined through measuring the bioaccumulation of the PAHs. The distribution of PAHs in sediments was different from the distribution in the organisms suggesting preferential uptake/depuration or uptake from pore or bottom waters. The average bioaccumulation factor (4.36 ± 2.55) and the biota sediment accumulation factor (0.24±0.13) for the total PAHs by the ampeliscids were within the range reported for other benthic invertebrates. The average bioaccumulation factors were highest for dibenzothiophenes (up to 132) and alkylated PAHs and lowest for parent high molecular weight PAHs

    Hot Spots for Poly Aromatic Hydrocarbons (PAHs) in Sediments and Benthic Organisms in the Coastal Water of Qatar

    Get PDF
    The state of Qatar has a strategic location within the heart of the Arabian Gulf, the richest oil area in the world. Its extensive coastline (700 km) is experiencing some of the most radical environmental conditions in the world's oceans including extreme temperature, high UV irradiance as well as high evaporations. These extreme conditions are pushing many marine biota to function close to their physiological limits. On the top of the extreme natural hydrographic conditions, there are tremendous stress exerted by oil exploration, production and transportation and probably any remnants from the largest oil spills in history, during the Gulf war in 1991. The present study is the first comprehensive study in the Gulf that is designed to assess the spatial and temporal variability of levels of Poly Aromatic Hydrocarbons (PAHs) in sediments of the Qatari coastal water and their bioaccumulation by dominant benthic invertebrates. Sediments and dominants benthic organisms samples were collected seasonally from thirteen locations in the coastal water of Qatar starting in the winter of 2014 and for four consequent seasons. Ten abundant benthic invertebrate species representing different trophic levels were selected to assess the spatial and temporal variability of PAHs in the Qatar costal water. These species have limited or no mobility, a major criteria for selecting benthic organisms in bio-monitoring programs. These species included gastropods, bivalves, and crustaceans with different trophic positions including carnivores, omnivores, herbivores and detritivores. Samples were analyzed for 16 parent PAHs including low molecular weight parent PAHs (LPAHS) and high molecular weight parent PAHs (HPAHs), 18 alkyl homologs and dibenzothiophenes. The results of the present study will be used for ecological risks assessment. Levels of PAHs in sediments and tissue residues are found to be significantly variable with species, locations, seasons and also with distance from shore (P < 0.05). PAHs concentrations in sediments is negatively correlated with the water temperature (r = ? 0.65) indicating the impact of temperature and probably levels of UV radiations on the fate of PAHs. Levels of PAHs in sediments indicated the presence of few moderately contaminated sites near point sources. Concentrations of PAHs in sediments showed wide spatial and temporal range (5 8.5%) presenting a range of trophic levels including carnivores and filter feeders. Significant correlations (P < 0.05) were found between PAHs tissue residues concentrations and signatures of carbon and nitrogen stable isotopes emphasizing the roles of trophic pathways on the uptake and bioaccumulation levels of individual PAHs in marine invertebrates. The present results are to be supported by more samples from two more seasons. The knowledge from this study intended to assist PAHs monitoring and identification of potential sources to guide management decisions. The outcome of the study is expected to help the regulatory agency (Qatar Ministry of Environment) as well as Gulf organizations such as ROPME to improve environmental laws and set standards based on these studies.qscienc

    Global change: The Arabian Gulf ecosystem- An introduction

    Get PDF
    The Arabian Gulf is a main source of wealth and food for the people of the Gulf countries. For hundreds of years, the Gulf used to be the main source for some of the finest pearls in the world. It harbors highly diverse and productive habitats including coral reefs, mangroves, intertidal marshes, and seagrass. Another feature of the Arabian Gulf is that it hosts the second largest population of dugongs in the world's oceans. The Gulf is a shallow basin (avg. depth = 35 m) that has some of the most radical environmental conditions in the world's oceans including extreme temperature, high UV irradiance, high evaporations and limited fresh water influx, resulting in salinities that ranges from 40 up to 70 psu in some bays. On the top of the aforementioned extreme natural hydrographic conditions, there are tremendous environmental stresses exerted by the unprecedented industrialization, fossil hydrocarbon exploration and production, shipping tankers introducing non-indigenous species, power and desalination plants, and coastal development activities as well as any remnants from the largest oil spills in history, during the Gulf war in 1991. Qatar University Life Science Symposium (QULSS) is an annual event where local and world leader academics address the research priorities for the state of Qatar and the Gulf region. As headlines worldwide emphasize climatic changes, ocean acidification, eutrophication, loss of habitats, marine pollution, and toxic algal blooms as the top environmental issues threatening the health of the world's oceans and the Gulf, the QULSS of 2015 is tackling the effects of the local and global changes on the Arabian Gulf ecosystem. In QULSS-2015, marine scientists in Qatar University, along with collaborators from local, regional and international leading institutes, communicate and exchange their most recent research findings on impacts of different stressors including extreme natural conditions on the structures and functions of different species and habitats in the Gulf, to the fellow scientists, public, and policymakers. Objectives of the symposium are to increase the awareness on the ecological value of the Arabian Gulf, to initiate activities that foster marine science education, to promote interests in marine and environmental sciences among young people, to encourage young generations to pursue a career in marine environmental science/research, and to provide opportunities for networking and collaboration among scientists at the national, regional and international level as well as to strengthen scientific and research collaboration between academia, industry, and decision makers.Qscienc

    Physical drivers of chlorophyll and nutrients variability in the Southern-Central Arabian Gulf

    No full text
    The southern-central Arabian Gulf demonstrates a poor understanding of nutrients and chlorophyll dynamics in physical-biogeochemical settings. Here, using data of chlorophyll, nutrients and hydrographic parameters collected in two cruises in summer 2019 and winter 2020, we examined variability in nutrients and chlorophyll concentrations, and the driving mechanisms. Summer thermal stratification enhanced by intrusion of fresher surface water plume from the Arabian Sea developed a hypoxic zone (DO  0.05). Photo-protective carotenoids content in summer (0.59 mg/m3) was about 2.7 times their winter concentration. Winter cooling resulted in downwelling of dense water on the shallow coastal banks, which enhanced near bottom oxygen concentrations and swept away nutrient-rich water resulting in lower winter chlorophyll. This research features aspects of the physical and biogeochemical drivers underpinning the dynamics of nutrients and chlorophyll in the central Gulf.This work was funded by QU Grant [QUST-2-CAS-2019-44]

    Macrobenthos in the central Arabian Gulf: a reflection of climate extremes and variability

    No full text
    The arid subtropical ecosystem of the central Arabian Gulf was used to explore the combined effects of low primary productivity, high salinities, and variable temperatures on the composition and structure of benthic macrofauna at 13 sites encircling the Qatar Peninsula in winter and summer (or late spring) of 2010 and 2011. The low abundance, biomass, and remarkably high species turnover may be a reflection of the oligotrophic, thermally variable, hypersaline coastal environment. The number of species and within-habitat diversity was lowest in the highest salinities but increased with finer-grained sediments and lower salinity. A remarkable temporal variation in species composition observed may reflect insufficient primary production to sustain new populations recruited from the seasonal exchange of water from the adjacent Sea of Oman. Low abundances accompanied by continued replacement of species may be a "new model" for extremely arid conditions associated with global warming. 2015, Springer International Publishing Switzerland.We would like to thank the Qatar National Research Fund (QNRF) for field work support (NPRP 08-497-1-086), as well as Canadian Healthy Oceans Network (CHONe) and Taiwan's Ministry of Science and Technology for supporting data analysis and manuscript preparation (MOST 103-2119-M-002-029-MY2). We also thank captain and crew of the R/V "Mukhtabar Al Bihar" and the Qatar University Environmental Studies Center laboratory staff and technicians for their work at sea and conducting chemical and biological analyses.Scopu

    Bathymetric zonation of deep-sea macrofauna in relation to export of surface phytoplankton production

    Get PDF
    Author Posting. © Inter-Research, 2010. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 399 (2010): 1-14, doi:10.3354/meps08388.Macrobenthos of the deep, northern Gulf of Mexico (GoM) was sampled with box cores (0.2 m2) along multiple cross-depth transects extending from depths of 200 m to the maximum depth of the basin at 3700 m. Bathymetric (depth) zonation of the macrofaunal community was documented for 6 major taxa (a total of 957 species) on the basis of shared species among geographic locations; 4 major depth zones were identified, with the 2 intermediate-depth zones being divided into east and west subzones. Change of faunal composition with depth reflects an underlying continuum of species replacements without distinct boundaries. The zonal patterns correlated with depth and detrital particulate organic carbon (POC) export flux estimated from remotely-sensed phytoplankton pigment concentrations in the surface water. The Mississippi River and its associated mesoscale eddies, submarine canyon, and deep sediment fan appear to influence the horizontal zonation pattern through export of organic carbon from the ocean surface and the adjacent continental margin. On the local scale, near-bottom currents may shape the zonation pattern by altering sediment grain size, food availability, and larval dispersal. This study suggests a macroecological relationship between depth, export POC flux, and zonation; parsimonious zonal thresholds need to be tested independently for other continental margin ecosystems.This research was funded by the U.S. Department of Interior, Minerals Management Service, Contract No. 1435-01-99-CT-30991

    Mercury accumulation in Lethrinus nebulosus from the marine waters of the Qatar EEZ

    No full text
    Total mercury (THg) and methylmercury (MeHg) were recorded in the commercial demersal fish Lethrinus nebulosus, caught from six locations in Qatar EEZ (Exclusive Economic Zone). Concentrations of THg decreased in the order: liver ˃ muscle ˃ gonad. THg concentrations in fish tissue ranged from 0.016 ppm in gonad to 0.855 ppm (mg kg−1 w/w) in liver tissues, while concentrations in muscle tissue ranged from 0.24 to 0.49 ppm (mg kg−1 w/w) among sampling sites. MeHg concentrations were used to validate food web transfer rate calculations. Intake rates were calculated to assess the potential health impact of the fish consumption. There is no major threat to human health from the presence of Hg in L. nebulosus, based upon reasonable consumption patterns, limited to no more than three meals of L. nebulosus per week.Qatar National Research Fund (QNRF) under the National Priorities Research Program (NPRP) award number NPRP 09-505-1-08

    Global patterns and predictions of seafloor biomass using random forests

    Get PDF
    A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management
    corecore